Course Type	Course Code	Name of Course	L	Т	Р	Credit
DE	NPHD504	BIOPHYSICS	3	0	0	3

Prerequisite: Mathematical Physics, Electrodynamics, Statistical Mechanics, Thermodynamics, Optics and Spectroscopy.

Course Objective

This course introduces the basic concepts of biophysics, which is a multidisciplinary field that combines physics and mathematics to understand the physical and chemical processes occur in living organisms.

Learning Outcomes

After completion of the course, students will:

- Understand the impact of physics in solving the biological problems.
- Learn how to address the next generation biological challenges by utilizing physical instrumentation and methodologies.

No. Hours 1 Introduction and Basic concepts: Notion of biophysics, Explanation with examples, Cell: structure, function, division; Tissue: structure, function; Intra and extracellular components. 07 This unit will cover the motivation for studying biophysics. Also will describe the structure and functions of cell, tissue and cellular components. 2 Thermodynamics; Free energy; Chemical potential; Redox potential; Bioenergetics. 05 Here, students will learn about the thermodynamic concepts applied in biological systems. 3 Biomolecules and their interactions: Micro and interactions; Camputational biophysics. 10 In this unit students will be familiar with several biological molecules and their interactions; Computational biophysics. 4 Membrane biophysics: functionalization; Intra- and inter-molecular forces and interactions; Computational biophysics: 05 Here students will learn about the physics of biomembranes. 5 Experimental methods in biophysics: kadiation biophysics: Light-matter interaction in biophysics; X-rays; X-ray scattering: reflectometry, diffraction, small angle X-ray scattering: reflectometry, diffraction, spectrascopy: Ultraviolet & visible spectroscopy- Beer Lamberts law; Infrared spectroscopy; Brewster's angle microscopy; Atomic force microscopy; Brewster's angle microscopy; Canning and tunnelling electron microscopy; Optical microscopy; Brewster's angle microscopy; Scanning and tunnelling electron microscopy; Optical microscopy; Brewster's angle microscopy; Atomic force microscopy; Brewster's angle microscopy; Atomic force microscopy; Brewster's angle microscopy; A	Unit	Topics to be Covered	Lecture	Learning Outcome
Explanation with examples, Cell: structure, function, division; Tissue: structure, function; Intra and extracellular components.studying biophysics. Also will describe the structure and functions of cell, tissue and cellular components.2Thermodynamics: Entropy; Enthalpy – Hess law; Laws of thermodynamics; Free energy; Chemical potential; Redox potential; Bioenergetics.05Here, students will learn about the thermodynamic concepts applied in biological systems.3Biomolecules and their interactions: macromolecules; Structure and dynamics of protein, nucleic acid, carbohydrate, phospholipid, biological membrane; drug; bio-compatible nanoparticles; functionalization; Intra- and inter-molecular forces and interactions; Computational biophysics.10In this unit students will be familiar with several biological molecules and their interactions.4Membrane biophysics: Structure of biomembrane; anoparticle interactions with cell membrane.05Here students will learn about the physics of biomembranes.5Experimental methods in biophysics: diffraction, small angle X-ray scattering.05In this unit students will gather knowledge on various Radiation Biophysics of life.6(b) Spectroscopy: Ultraviolet & visible spectroscopy- Beer Lamberts law; Infrared spectroscopy; Brewster's angle microscopy: Scanning and tunnelling electron microscope; Optical microscope; Imaging techniques: Ultrasongraphy, Magnetic resonance imaging (MRI).05In this unit students will gather knowledge on various Microscopy tools used for characterization of biophysical systems for understanding the physics of life.				g • • • • • • • • • • • • • • • • •
of thermodynamics; Free energy; Chemical potential; Redox potential; Bioenergetics. thermodynamic concepts applied in biological systems. 3 Biomolecules and their interactions: Micro and macromolecules; Structure and dynamics of protein, nucleic acid, carbohydrate, phospholipid, biological membrane; drug; bio-compatible nanoparticles; functionalization; Intra- and inter-molecular forces and interactions; Computational biophysics. In this unit students will be familiar with several biological molecules and their interactions. 4 Membrane biophysics: Structure of biomembrane; Lock and key model; Fluid mosaic model; protein, drug and nanoparticle interactions with cell membrane. 05 Here students will learn about the physics of biomembranes. 5 Experimental methods in biophysics: Radiation biophysics; X-rays cattering. 05 In this unit students will gather knowledge on various Radiation Biophysical systems for understanding the physics of life. 6 (b) Spectroscopy: Beer Lamberts law; Infrared spectroscopy; Beer Lamberts law; Infrared spectroscopy; Raman spectra; Circular Dichroism; Fluorescence spectroscopy. 05 In this unit students will gather knowledge on various Spectroscopy tools used for characterization of biophysical systems for understanding the physics of life. 7 (c) Microscopy: Atomic force microscopy; Brewster's angle microscopy; Scanning and tunnelling electron microscopy; Optical microscope; Imaging techniques: Ultrasonography, Magnetic resonance imaging (MRI). In this unit students will gather knowledge on various Microscopy tools used for characterization of biophysical systems for understanding the p	1	Explanation with examples, Cell: structure, function, division; Tissue: structure, function; Intra and extracellular	07	This unit will cover the motivation for studying biophysics. Also will describe the structure and functions of cell, tissue and cellular components.
macromolecules; Structure and dynamics of protein, nucleic acid, carbohydrate, phospholipid, biological membrane; drug; bio-compatible nanoparticles; functionalization; Intra- and inter-molecular forces and interactions; Computational biophysics. several biological molecules and their interactions. 4 Membrane biophysics: Structure of biomembrane; Lock and key model; Fluid mosaic model; protein, drug and nanoparticle interactions with cell membrane. 05 Here students will learn about the physics of biomembranes. 5 Experimental methods in biophysics: Light-matter interaction in biophysics; X-rays; X-ray scattering: reflectometry, diffraction, small angle X-ray scattering. 05 In this unit students will gather knowledge on various Radiation Biophysics of life. 6 (b) Spectroscopy: Ultraviolet & visible spectroscopy-Beer Lamberts law; Infrared spectroscopy; Raman spectra; Circular Dichroism; Fluorescence spectroscopy: Atomic force microscopy; Brewster's angle microscopy; Scanning and tunnelling electron microscope; Optical microscope; Imaging techniques: Ultrasonography, Magnetic resonance imaging (MRI). 05 In this unit students will gather knowledge on various Microscopy tools used for characterization of biophysical systems for understanding the physics of life.		of thermodynamics; Free energy; Chemical potential;	05	thermodynamic concepts applied in biological systems.
and key model; Fluid mosaic model; protein, drug and nanoparticle interactions with cell membrane.biomembranes.5Experimental methods in biophysics: Radiation biophysics; X-rays; X-ray scattering: reflectometry, diffraction, small angle X-ray scattering.05In this unit students will gather knowledge on various Radiation Biophysics tools used for characterization of biophysics of life.6(b) Spectroscopy: Ultraviolet & visible spectroscopy- Beer Lamberts law; Infrared spectroscopy; Raman spectra; Circular Dichroism; Fluorescence spectroscopy.05In this unit students will gather knowledge on various Spectroscopy tools used for characterization of biophysical systems for understanding the physics of life.7(c) Microscopy: Atomic force microscopy; Brewster's angle microscopy; Scanning and tunnelling electron microscope; Optical microscope; Imaging techniques: Ultrasonography, Magnetic resonance imaging (MRI).05In this unit students will gather knowledge on various Microscopy tools used for characterization of biophysical systems for understanding the physics of life.	3	macromolecules; Structure and dynamics of protein, nucleic acid, carbohydrate, phospholipid, biological membrane; drug; bio-compatible nanoparticles; functionalization; Intra- and inter-molecular forces and	10	In this unit students will be familiar with several biological molecules and their interactions.
5 Experimental methods in biophysics: Radiation biophysics: Light-matter interaction in biophysics; X-rays; X-ray scattering: reflectometry, diffraction, small angle X-ray scattering. 05 In this unit students will gather knowledge on various Radiation Biophysics tools used for characterization of biophysical systems for understanding the physics of life. 6 (b) Spectroscopy: Ultraviolet & visible spectroscopy- Beer Lamberts law; Infrared spectroscopy; Raman spectra; Circular Dichroism; Fluorescence spectroscopy. 05 In this unit students will gather knowledge on various Spectroscopy tools used for characterization of biophysical systems for understanding the physics of life. 7 (c) Microscopy: Atomic force microscopy; Brewster's angle microscopy; Scanning and tunnelling electron microscope; Optical microscope; Imaging techniques: Ultrasonography, Magnetic resonance imaging (MRI). 05 In this unit students will gather knowledge on various Microscopy tools used for characterization of biophysical systems for understanding the physics of life.	4	and key model; Fluid mosaic model; protein, drug and	05	Here students will learn about the physics of biomembranes.
6 (b) Spectroscopy: Ultraviolet & visible spectroscopy- Beer Lamberts law; Infrared spectroscopy; Raman spectra; Circular Dichroism; Fluorescence spectroscopy. 05 In this unit students will gather knowledge on various Spectroscopy tools used for characterization of biophysical systems for understanding the physics of life. 7 (c) Microscopy: Atomic force microscopy; Brewster's angle microscopy; Scanning and tunnelling electron microscope; Optical microscope; Imaging techniques: Ultrasonography, Magnetic resonance imaging (MRI). 05 In this unit students will gather knowledge on various Microscopy tools used for characterization of biophysical systems for understanding the physics of life.	5	Experimental methods in biophysics: <i>Radiation biophysics</i> : Light-matter interaction in biophysics; X-rays; X-ray scattering: reflectometry,	05	In this unit students will gather knowledge on various Radiation Biophysics tools used for characterization of biophysical systems for understanding the physics of life.
7 (c) Microscopy: Atomic force microscopy; Brewster's angle microscopy; Scanning and tunnelling electron microscope; Optical microscope; Imaging techniques: Ultrasonography, Magnetic resonance imaging (MRI). 05 In this unit students will gather knowledge on various Microscopy tools used for characterization of biophysical systems for understanding the physics of life.	6	(b) <i>Spectroscopy</i> : Ultraviolet & visible spectroscopy- Beer Lamberts law; Infrared spectroscopy; Raman spectra; Circular Dichroism; Fluorescence	05	In this unit students will gather knowledge on various Spectroscopy tools used for characterization of biophysical systems for
	7	angle microscopy; Scanning and tunnelling electron microscope; Optical microscope; Imaging techniques: Ultrasonography, Magnetic resonance imaging	05 42	In this unit students will gather knowledge on various Microscopy tools used for characterization of biophysical systems for

Text Books:

- 1. Biophysics, V. Pattabhi & N. Gautham, 2002, Kluwer Academic Publishers.
- 2. Biophysics: An introduction, R. Glazer, 2012, Springer-Verlag Berlin Heidelberg.
- 3. Molecular and Cellular Biophysics, Meyer B Jackson, 2006, Cambridge

Reference Books:

- 1. Intermolecular and surface forces, J. Israelachvilli, 2011, Elsevier.
- 2. Biophysics: An introduction, Rodney M. J. Cotterill, 2002, Wiley.
- 3. Biophysics, Ed. W. Hoppe, 1983, Springer-Verlag.
- 4. Basic Biophysics for Biologist by M. Daniel, 2011, Agrobios, India.
- 5. Essentials of Biophysics, P Narayanan, 2005, New Age International.